DOI: 10.36108/pajols/4202/80.0250

Publication of Faculty of Basic Medical Sciences and Basic Clinical Sciences , Ladoke Akintola University of Technology, Ogbomoso

RESEARCH

www.pajols.org Online ISSN:2672-5924

Open Access

Morphological and Molecular identification of Anopheles Mosquitoes in six selected Local Governments in Ekiti State, South-West Nigeria

Adejumoke A. Adejayan¹*, Akintunde A. Ajayi², Hilary I. Okoh¹, Segun I. Oyedeji¹

¹Department of Animal and Environmental Biology, Faculty of Science, Federal University Oye-Ekiti, Ekiti State, Nigeria.

²Department of Mathematical and Physical Science Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.

*Correspondence should be addressed to Adejumoke A. Adejayan: adejayan.adejumoke@yahoo.com

Received 5th July 2024; Revised 20th July 2024; Accepted 22nd July 2024

© 2024 Adejayan *et al.* Licensee Pan African Journal of Life Sciences an official publication of Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso. This is an Open Access article distributed under the terms of the Creative commons Attribution License (https://creativecommons.org/licenses/BY/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Malaria poses a significant public health challenge in Nigeria. The identification of *Anopheles* mosquitoes involves both morphological and molecular approaches. Morphological identification relies on physical characteristics such as body shape and wing patterns, while molecular characterization uses genetic markers to differentiate species and understand their genetic diversity. These methods play crucial roles in studying Anopheles mosquitoes, which are vectors for diseases like malaria, aiding in their surveillance, control, and research efforts. This study aimed to identify *Anopheles* mosquito species in six selected local governments of Ekiti State, South West, Nigeria,, using both morphological and molecular methods.

Methods: Mosquito larvae were collected between April 2022 and July 2023 from eighteen locations in Ado, Oye, Ise-Orun, Ido-Osi, Efon and Ikere local governments respectively. We employed standard dipper sampling techniques to collect mosquito larvae from all types of larval habitats, including both manmade and natural sources, at each study location throughout the mosquito breeding season. The collected larvae were reared to the adult stage. The adult mosquitoes were then identified morphologically using morphological keys, and their species were confirmed through Multiplex Polymerase Chain Reaction for molecular characterisation. The data obtained were analysed using SPSS version 27.0, with a p-value set at 95%.

Results: The study identified *Anopheles gambiae* (80.5%) and *Anopheles funestus* (19.5%) as the major malaria vectors. Two sibling species of *Anopheles gambiae* s.l were identified by PCR: *Anopheles gambiae* s.s (75.4%) and *Anopheles arabiensis* (18.8%), *Anopheles coluzzii* (M form) (55.3%) and Savannah (S-form) (44.7%).

Conclusion: Integrating molecular techniques with morphological analysis can provide valuable insights into the species composition, population dynamics, and biological characteristics of malaria vectors.

Keywords: Malaria, Anopheles mosquitoes, larvae, morphology, polymerase chain reaction

1.0 INTRODUCTION

Malaria, a debilitating disease prevalent in Africa and Asia, is caused by Plasmodium protozoa transmitted by Anopheles mosquitoes [1]. In Africa, the primary malaria vectors belong to the Anopheles gambiae complex and Anopheles funestus group, with Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles coluzzii being the main culprits [2].Malaria is the most important and lifethreatening parasitic disease in Africa which accounted for about 249 million clinical cases and resulted in over 608 thousand deaths globally in the year 2022 [1]. The Anopheles genus, particularly the Anophelinae subfamily, plays a crucial role in spreading malaria and other significant public health pathogens such as dengue fever, Zika virus, chikungunya, yellow fever, and West Nile virus [3]. Anopheles gambiae, Anopheles funestus and Anopheles arabiensis are the three major vectors of malaria in Nigeria [4, 5]. Species complexes exist within the genus Anopheles [6].

However, identifying these species is challenging due to their similar morphological features, leading to difficulties in accurately determining sibling species and subspecies. The sub-species within the Anopheles gambiae complex and the Anopheles funestus group are morphologically indistinguishable but exhibit differences in behavior, host feeding preferences and breeding requirements [7, 8]. Traditional methods for identifying malaria vectors rely on morphological traits. However, due to the limitations of these methods, it is crucial to utilize molecular (DNA-based) techniques for accurate identification and characterization of these vectors. The An. gambiae sensu lato complex includes species such as An. melas, An. merus, An. arabiensis, An. quadriannulatus (A and B), An. bwambe, and An. gambiae sensu stricto, which has recently been divided into An. gambiae sensu stricto (S form) and An. coluzzii (M form) [9].

Morphological identification often cannot differentiate between these species, as it is less effective for distinguishing sibling species within a complex because these species often exhibit nearly identical physical characteristics, making them indistinguishable based on morphology alone. PCR is frequently employed with primers designed for all members of the Anopheles complex to determine which specific species are present in a given area [10]. However, multiple species can co-exist in the same area, each exhibiting unique behaviors and transmission dynamics, which may lead to multi-species transmission. Effective malaria control and potential elimination efforts must involve accurate identification of malaria vectors to distinguish between primary vectors, secondary vectors, and non-vectors, ensuring that resources are not misallocated to controlling less significant vectors. To overcome these challenges, this research employs morphological analysis and molecular techniques [11, 12] to identify malaria vectors in six major Local Government Areas of Ekiti State, Nigeria. By combining these approaches, we aim to accurately determine the malaria vector species and contribute to a better understanding of malaria transmission and control in the region.

2.0 METHODOLOGY

2.1 Ethical Approval

The research received ethical approval from the Faculty of Science Ethics Committee at the Federal University Oye, Ekiti State. Informed consent was obtained from local residents in the study area, and a local contact helped identify suitable study sites. The research was conducted in six local government areas in Ekiti State, Nigeria, namely Ado, Oye, Efon, Ise-Orun, Ido-Osi, and Ikere, with three communities randomly selected from each area. Larvae of Anopheles mosquitoes were collected from gutters, tyre tracks, ponds, and ditches in the selected communities. They were identified based on their horizontal positioning on the water surface [13] and the geographic coordinates of the collection sites were recorded using a GPS device.

2.1.1 Rearing of Anopheles mosquito larvae

Mosquito larvae collected were carefully transported in clearly labeled plastic containers to the insectaries at the Entomology unit of the Department of Animal and Environmental Biology, Federal University Oye-Ekiti where they were reared to adulthood. Larvae from different breeding sites were kept separately to ensure accurate species identification. In the laboratory, larvae were placed in individual bowls labeled accordingly and maintained under controlled conditions: room temperature of 27°C and relative humidity of 82%. The water in the bowls was regularly changed to prevent mortality from excess food. Pupae that emerged were transferred using a Pasteur pipette to labeled plastic cups covered with nets to contain the adult mosquitoes upon emergence. An opening covered with cotton wool allowed for the aspiration of emerged adults, which were closely monitored. Emerging adults were exposed to insecticides, and dead mosquitoes were stored in labeled Eppendorf tubes with desiccated silica gel for PCR analysis.

2.1.2 Morphological identification of *Anopheles* mosquitoes

Morphological identification of the mosquitoes was conducted using a stereomicroscope and morphological keys [11] to identify the species. For molecular identification, DNA was extracted from the legs of *Anopheles gambiae* specimens, and PCR amplification was performed at the Molecular Entomology and Vector Control Research Laboratory of the Nigerian Institute of Medical Research in Lagos following the protocols of [12]. ;

2.2 Statistical Analysis

The distribution of Anopheles species groups, identified

 Table 1. Distribution of Anopheles mosquitoes' species by Local

 Government areas

		Anophe-			
	Anopheles	les funes-	Total	Chi-	p-
LGA	gambiae	tus	(%)	square	value
Ado	270 (20.2)	90 (27.7)	360	18.932	0.002
Oye	300 (22.4)	60 (18.5)	360		
Efer	190 (12 5)	(0)(10.5)	240		
EION	180 (15.5)	00 (18.3)	240		
Ikere	240 (17.9)	48 (14.8)	288		
Ise-			234		
Orun	192 (14.3)	42 (12.9)	(14.1)		
Ido-		(,)	181		
Osi	156 (11.7)	25 (7.7)	(10.9)		
	~ /				
Total	1338 (80.5)	325	1663		

through both morphological and molecular methods, was evaluated using a chi-square test. All statistical analyses were conducted using SPSS version 27, with a significance level set at ≤ 0.05 .

3.0 RESULTS

Table 1 presents the distribution of two *Anopheles* species, *Anopheles gambiae* and *Anopheles funestus* identified morphologically under a binocular microscope across the six Local Government Areas (LGAs) in Ekiti State. A total of 1663 *Anopheles* mosquitoes collected from all the LGA were identified morphologically using stereo microscope. Out of the total *Anopheles* mosquitoes identified, 1338 (80%) were *Anopheles gambiae* species while 325 (20%) were *Anopheles funestus* species. Among other LGA, Ado recorded a larger proportion (90; 28%) of *Anopheles funestus* species, followed by Oye and Efon-Alaaye, which recorded 60 (19%), respectively. Significant variation was observed in the distribution of these two mosquito species among the LGAs (p < 0.05).

Table 2 shows the distributions of *Anopheles* species in each communities under the selected local governments in which Egbe community in Oye LG recorded the highest number 115 (38.3%) of *Anopheles gambiae*, while NTA areas of Ado LG recorded the highest number of 34 (37.8%) of *Anopheles funestus*.

Table 3 shows the result of the molecular characterization of the *Anopheles gambiae* complex sibling species across the six Local Government Areas (LGAs) in Ekiti State. Overall, of the 1,338 *Anopheles gambiae* complex sibling

Table 2. Distribution of Anopheles mosquitoes species by communities across selected local Government areas in Ekiti State

LGA	Location	Anopheles gambiae	Anopheles funestus	Total (%)	Chi-square	p-value
Ado	Adebayo	78 (28.9)	25 (27.8)	103 (28.6)	0.042	0.979
	NTA	100 (37.0)	34 (37.8)	134 (37.2)		
	Ilawe	92 (34.1)	31 (34.4)	123 (34.2)		
	Total	270 (75.0)	90 (25.0)	360 (100)		
Oye	Irona	98 (32.7)	18 (30.0)	116 (32.2)	0.463	0.793
	Irare	87 (29.0)	20 (33.3)	107 (29.7)		
	Egbe	115 (38.3)	22 (36.7)	137 (38.1)		
	Total	300 (83.3)	60 (16.7)	360 (100)		
Efon	IItawure	85 (47.2)	19 (31.7)	104 (43.3)	4.623	0.099
	Orisumbare	52 (28.9)	24 (40.0)	76 (31.7)		
	Babalola	43 (23.9)	17 (28.3)	60 (25.0)		
	Total	180 (75.0)	60 (25.0)	240 (100)		
Ikere	Ajolagun	69 (28.8)	18 (37.5)	87 (30.2)	1.785	0.409
	Ikoyi 1	90 (37.5)	14 (29.2)	104 (36.1)		
	Ikoyi 2	81 (33.8)	16 (33.3)	97 (33.7)		
	Total	240 (83.3)	48 (16.7)	288 (100)		
Ise-Orun	Uso	45 (23.4)	10 (23.8)	55 (23.5)	0.493	0.781
	Olele	88 (45.8)	17 (40.5)	105 (44.9)		
	Erinwa	59 (30.7)	15 (35.7)	74 (31.6)		
	Total	192 (82.1)	42 (17.9)	234 (100)		
Ido-Osi	Sabo	60 (38.5)	7 (28.0)	67 (37.0)	1.025	0.599
	Orin	44 (28.2)	8 (32.0)	52 (28.7)		
	Oke Bakare	52 (33.3)	10 (40.0)	62 (34.3)		
	Total	156 (86.2)	25 (13.8)	181 (100)		

Table 3. Molecular characterisation of Anopheles gambiae complete	X
sibling species identified across the study LGAs	

	Total A.	A. gam-		Uni-		
	gambiae	biae s.s.	A. ara-	dentif		p-
	exam-	(%)	biensis	ied		val-
LGA	ined		(%)	(%)	χ^2	ue
		200		18	14.52	0.15
Ado	270	(74.1) 185	52 (19.3)	(6.7) 15	8	0
Ikere	240	(77.1) 137	40 (16.7)	(6.3) 13		
Efon Ise-	180	(76.1) 148	30 (16.7)	(7.2) 8		
Orun	192	(77.1) 236	36 (18.8)	(4.2) 14		
Ose Ido-	300	(78.7) 102	50 (16.7)	(4.7) 10		
Osi	156	(65.4) 1008	44 (28.2) 252	(6.4) 78		
Total	1338	(75.3)	(18.8)	(5.8)		

4).

Table 5 shows the result of the molecular forms of the *Anopheles gambiae* complex sibling species across six Local Government Areas (LGAs) in Ekiti State.

A total of 470 *Anopheles gambiae* complex sibling species were examined to ascertain their morphological forms. Most of the species from Ado (56.9%) and Ikere (61.2%) were of the S forms. However, most of the mosquitoes in Efon, Ise-Orun, Oye, and Ido-Osi were of the M forms, with 100%, 58.3%, 71.4% and 51.0% prevalence, respectively. There were significant variations in the distribution of the forms across the LGAs (p=0.000) (table 5) and across the communities (Table 6)

4.0 DISCUSSION

The prevalence of *Anopheles gambiae* and *An. funestus* observed in this study is consistent with previous research highlighting their anthropophilic behavior [14]. This behavioural trait significantly enhances their ability to transmit malaria in sub-Saharan Africa, where they are

 Table 4. Distribution of Anopheles mosquito species by communities across selected local Government areas

		Total Anopheles	Anopheles gambiae	Anopheles ara-	Unidentified	~	
LGA	Location	gambiae examined	s.s (%).	biensis (%)	(%)	Chi-square	p-value
Ado	Adebayo	97	70 (72.2)	20 (20.6)	7 (7.2)	4.53	0.339
	NTA	100	81 (81.0)	14 (14.0)	5 (5.0)		
	Ilawe	73	49 (67.1)	18 (24.7)	6 (8.2)		
	Total	270	200 (74.1)	52 (19.3)	18 (6.7)		
Oye	Irona	123	102 (82.9)	17 (13.8)	4 (3.3)	3.582	0.466
•	Irare	76	60 (78.9)	13 (17.1)	3 (3.9)		
	Egbe	101	74 (73.3)	20 (19.8)	7 (6.9)		
	Total	300	236 (78.7)	50 (16.7)	14 (4.7)		
Efon	IItawure	64	50 (78.1)	10 (15.6)	4 (6.3)	1.531	0.821
	Orisumbare	62	47 (75.8)	9 (14.5)	6 (9.7)		
	Babalola	54	40 (74.1)	11 (20.4)	3 (5.6)		
	Total	180	137 (76.1)	30 (16.7)	13 (7.2)		
Ikere	Ajolagun	74	52 (70.3)	16 (21.6)	6 (8.1)	3.275	0.512
	Ikoyi 1	77	60 (77.9)	12 (15.6)	5 (6.5)		
	Ikoyi 2	89	73 (82.0)	12 (13.5)	4 (4.5)		
	Total	240	185 (77.1)	40 (16.7)	15 (6.3)		
Ise-Orun	Olele	66	48 (72.7)	15 (22.7)	3 (4.5)	1.513	0.824
	Uso	52	40 (76.9)	10 (19.2)	2 (3.8)		
	Erinwa	74	60 (81.1)	11 (14.9)	3(4.1)		
	Total	192	148 (77.1)	36 (18.8)	8 (4.2)		
Ido-Osi	Orin	60	43 (71.7)	14 (23.3)	3 (5.0)	2.065	0.723
	Sabo	58	37 (63.8)	17 (29.3)	4 (6.9)		
	Oke Bakare	38	22 (57.9)	13 (34.2)	3 (7.9)		
	Total	156	102 (65.4)	44 (28.2)	10 (6.4)		

species, 1008 (75.3%) Anopheles gambiae s.s., Table 5. Molecular forms of Anopheles gambiae complex sibling species identified 252 (18.8%) Anopheles arabiensis, and 78 across the study LGAs

(5.8%) were unidentified. In each LGAs.		Total A. gambi-	M- forms		Chi-	p-	-
Anonheles gambiae s s was the most prevalent -	LGA	ae examined	(%)	S- forms (%)	square	value	
(ranging between 65.4% and 78.7% of all	Ado	102	44 (43.1)	58 (56.9)	64.31	0.000	
(ranging between 03.4% and 78.7% of an	Ikere	98	38 (38.8)	60 (61.2)			
Anopheles gambiae complex examined). There	Efon	51	51 (100)	0			
were no significant variations in the distribu-	Ise-Orun	72	42 (58.5)	30 (41.7)			
	Oye	49	35 (71.4)	14 (28.6)			
tion of the variants across the LGAs (p=0.150)	Ido-Osi	98	50 (51.0)	48 (49.0)			
(Table 3) and across the communities (Table	Total	470	260 (55.3)	210 (44.7)			

		Total Anopheles	WI- IOFILIS (76)			
LGA	Location	gambiae examined		S- forms (%)	Chi-square	p-value
Ado	Adebayo	38	18 (47.4)	20 (52.6)	0.946	0.623
	NTA	31	14 (45.2)	17 (54.8)		
	Ilawe	33	12 (36.4)	21 (63.6)		
	Total	102	44 (43.1)	58 (56.9)		
Oye	Irare	18	10 (55.6)	8 (44.4)	4.134	0.127
	Egbe	16	14 (87.5)	2 (12.5)		
	Irona	16	11 (68.8)	5 (31.3)		
	Total	50	35 (70.0)	15 (30.0)		
Efon	iItawure	21	21 (100)	0	-	-
	Babalola	17	17 (100)	0		
	Orisumibare	13	13 (100)	0		
	Total	51	51 (100)	0		
Ikere	Ajolagun	26	8(30.8)	18 (69.2)	0.962	0.618
	Ikoyi 1	34	14 (41.2)	20 (58.8)		
	Ikoyi 2	38	16 (42.1)	22 (57.9)		
	Total	98	38 (38.8)	60 (61.2)		
Ise-Orun	Uso	23	13 (56.5)	10 (43.5)	0.067	0.967
	Olele	30	18 (60.0)	12 (40.0)		
	Erinwa	19	11 (57.9)	8 (42.1)		
	Total	72	42 (58.3)	30 (41.7)		
Ido-Osi	Orin	36	20 (55.6)	16 (44.4)	3.605	0.165
	Oke Bakare	30	18 (60)	12 (40.0)		
	Sabo	32	12 (37.5)	20 (62.5)		
	Total	98	50 (51.0)	48 (49.0)		

Table 6. Distribution of Anopheles mosquito species by communities across selected local Government areas in Ekiti State

Plate 1. PCR Characterization of members of the *Anopheles gambiae* group Lane 1: 100 bp DNA ladder, Lane 2: Positive control for *Anopheles gambiae s.s.* Lane 3: Negative control, Lane 4 – 20: Sample wells

recognized as important malaria vectors [15-19]. The higher relative abundance of An. gambiae s.s compared to *An. arabiensis* and their co-occurrence in this study aligns with findings from [20-23]. The prevalence of these two mosquito species can be attributed to the presence of suitable breeding sites, such as stagnant water pools located near human settlements [24]. This correlation is consistent with other studies' findings indicating that households close to breeding sites typically experience higher mosquito densities [24, 25]. In rural areas, the proximity of communities to permanent water bodies likely plays a crucial role in influencing the abundance

and distribution of *An. funestus*. On the other hand, *An. gambiae* tends to prefer temporary breeding sites formed by human activities such as irrigation farming, water retention trenches, abandoned vehicle tracks, potholes, and ground pools from domestic water sources [26].

The use of molecular markers has been crucial in identifying both malaria vector and non-vector species, as well as in understanding their distribution in rural and urban environments. In this study, both *An. gambiae* s.s and *An. arabiensis* were identified within the An. gambiae group. This finding is consistent with previous research that identifies *An. gambiae* s.s and *An. arabiensis* as primary malaria vectors in Nigeria [25, 26]. *An.*

gambiae s.s was found to be widely distributed and co-existed with *An. arabiensis* across all local government areas were surveyed in Ekiti state.

However, the study noted a significantly higher proportion of *An. gambiae s.s* compared to *An. arabiensis* in the study areas. The lower occurrence of *An. arabiensis* may be due to its preference for drier ecological conditions [28-30]. This study confirms the presence of *An. arabiensis* as a major malaria vector in Ekiti state, consistent with other studies that emphasise its role in malaria transmission in the forested regions of southwestern Nigeria [14, 25].

The application of molecular techniques in this study has facilitated the precise characterization of vector species, surpassing traditional morphological identification methods used for malaria vectors in Nigeria [31]. This research has provided detailed insights into the identity of malaria vectors in specific locations within the surveyed local government areas. Such information is critical for guiding interventions and assessing their effectiveness.

Current hypotheses suggest that changes in land use patterns in African highlands may create more favourable habitats for malaria vectors, leading to increased vector populations and raising the risk of malaria transmission to humans [32, 34].

In all the local government areas surveyed, both genetic variants of *An. gambiae s.s.*, known as the molecular 'M' and 'S' forms, were identified except in Efon-Alaaye LGA, where only the 'M' form was found. The exclusive presence of the 'M' form in Efon suggests the need for further investigation, potentially designating it as a prospective site for future studies on transgenic *Anopheles gambiae*. However, additional research is essential to confirm the presence of the molecular 'M' form specifically within Efon LGA. This study also revealed significant variation in the distribution of these genetic forms across the local government areas.

This study identified the predominant sibling species within the Anopheles gambiae complex across Ado, Ise-Orun, Oye, Ido-Osi, Ikere-Ekiti, and Efon-Alaaye LGAs in Ekiti State, Nigeria. The findings highlight the anthropophilic (preferring humans), endophagic (feeding indoors), and endophilic (resting indoors) behaviors of Anopheles gambiae sensu stricto. This suggests that interventions like long-lasting insecticide-treated nets and indoor residual spraying could be effective for controlling this species in the region. In contrast, Anopheles arabiensis exhibits exophagic (feeding outdoors) and exophilic (resting outdoors) behaviors, which may reduce the effectiveness of indoor residual spraying alone [35]. This underscores the importance of adopting integrated vector management strategies that address both indoor and outdoor mosquito habitats. Regular surveillance of vector species composition, distribution, and behavior is crucial for making informed decisions when implementing and adjusting effective vector control strategies in the future.

Acknowledgements

We appreciate the efforts of Dr Oyeniyi T.A. and Mrs. Izekor T.R. of the Molecular Entomology and Vector

Control Research Laboratory of the Nigerian Institute of Medical Research (NIMR), Yaba, Lagos, Nigeria for their assistance and guidance.

Conflicts of Interest

The authors declare that there is no conflict of interests.

Authors' Contributions

AAA conceived and designed the study, contributed to data collection, data analysis tools, analysis of data and manuscript writing. **AAA** contributed to data collection, data analysis and manuscript writing. **HIO** contributed to the study design and manuscript writing. **SIO** performed molecular analysis. All authors approved the final copy of the manuscript.

REFERENCES

- World Health Organization. World Malaria Report 2023. Geneva: WHO; 2023. Available from: https:// www.who.int/teams/global-malaria-programme/reports/ world-malaria-report-2023 [Accessed 30/04/2023]
- Akeju AV, Olusi TA, Simon-Oke IA. Molecular identification and wing variations among malaria vectors in Akure North Local Government Area, Nigeria. Sci Rep. 2022;12:7674.
- Djihinto OY, Medjigbodo AA, Gangbadja ARA, Saizonou HM, Lagnika HO, Nanmede D, et al. Malaria-transmitting vectors microbiota: Overview and interactions with Anopheles mosquito biology. Front Microbiol. 2022;13:891573.
- Awolola TS, Adeogun A, Olakiigbe AK, Oyeniyi T, Olukosi YA, Okoh H, et al. Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria. PLoS One. 2018;13(12): 1-13
- Akeju AV, Olusi TA, Simon-Oke IA. Molecular identification and wing variations among malaria vectors in Akure North Local Government Area, Nigeria. Sci Rep. 2022;12:7674.
- Harbach RE. Mosquito taxonomic inventory. 2012. Available from: http://mosquito-taxonomic-inventory.info/ [Accessed 5/7/2023]
- Takken W, Charlwood D, Lindsay SW. The behaviour of adult Anopheles gambiae, sub-Saharan Africa's principal malaria vector, and its relevance to malaria control: A review. Malar J. 2024;23:161.
- 8. Mawejje HD, Kilama M, Kigozi SP, Musiime AK, Kamya M, Lines J, et al. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J. 2021;20(1):138.

- Akpan GE, Adepoju KA, Oladosu OR, Adelabu SA. Dominant malaria vector species in Nigeria: Modelling potential distribution of Anopheles gambiae sensu lato and its siblings with MaxEnt. PLoS One. 2018;13(10): 1-15
- Dahan-Moss Y, Hendershot A, Dhoogra M, Julius H, Zawada J, Kaiser M, et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar J. 2020;19(1):89.
- 11. Coetzee M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 2020;19:70.
- 12. Dahan-Moss Y, Hendershot A, Dhoogra M, Julius H, Zawada J, Kaiser M, et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar J. 2020;19(1):89.
- Olusi TA, Simon-Oke IA, Akeju AV. Composition, habitat preference and seasonal variation of malaria vector larval and pupa stage in Akure North Local Government Area of Ondo State, Nigeria. Bull Natl Res Cent. 2021;45;87.
- 14. Koffi AA, Camara S, Ahoua Alou LP, Oumbouke WA, Wolie RZ, Tia IZ, et al. Anopheles vector distribution and malaria transmission dynamics in Gbêkê region, central Côte d'Ivoire. Malar J. 2023;22(1):192.
- Mwima R, Hui T-YJ, Nanteza A, Burt A, Kayondo JK. Potential persistence mechanisms of the major Anopheles gambiae species complex malaria vectors in sub-Saharan Africa: A narrative review. Malaria Journal. 2023; 22, 336.
- 16. Mawejje H, Weetman D, Epstein A, Lynd A, Opigo J,, Maiteki-Sebuguzi C, et al. Characterizing pyrethroid resistance and mechanisms in Anopheles gambiae (s.s.) and Anopheles arabiensis from 11 districts in Uganda. Current Research in Parasitology and Vector-Borne Diseases. 2022; 2; 100106
- 17. World Health Organization. Vector Born Disease March, 2020. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
- Matowo N, Martin J, Kulkarni MA, Mosha J, Lukole K, Isaya G, et al. An increasing role of pyrethroid-resistant Anopheles funestus in malaria transmission in the Lake Zone, Tanzania. Sci Rep . 2021;11: 13457
- 19. Ali S, Samake JN, Spear J, Carter T. Morphological identification and genetic characterization of Anopheles stephensi in Somaliland. Parasites Vectors 2022;15, 247
- Nguiffo-Nguete D, Mugenzi LM, Manzambi EZ, Tchouakui M, Wondji M, Tekoh T, et al. Evidence of intensification of pyrethroid resistance in the major malaria vectors in Kinshasa, Democratic Republic of Congo. Sci Rep 2023;13: 14711.
- 21. Iga J, Ochaya S, Echodu R, Opiyo E, Musiime AK, Nakamaanya A, Malinga GM, Sibling

Species Composition and Susceptibility Status of Anopheles gambiae s.l. to Insecticides Used for Indoor Residual Spraying in Eastern Uganda, Journal of Parasitology Research. 2023; 2023; 22252332023. https://doi.org/10.1155/2023/2225233

- Busari LO, Raheem HO, Iwalewa ZO, Fasasi KA, Adeleke MA. Investigating insecticide susceptibility status of adult mosquitoes against some class of insecticides in Osogbo metropolis, Osun State, Nigeria. PLoS One. 2023; 11;18(5):e0285605. doi: 10.1371/journal.pone.0285605.
- Boussougou-Sambe ST, Ngossanga B, Doumba-Ndalembouly
 AG, Boussougou L, Woldearegai T, Mougeni F, et al. Anopheles gambiae s.s. resistance to pyrethroids and DDT in semi-urban and rural areas of the Moyen-Ogooué Province, Gabon. Malar J 2023;22: 382.
- Lawal N, Idoko AS, Abdullahi H, Jibiya SA, Ibrahim N, Osibemhe M, Imam AA. Assessment of physico-chemical characteristics of mosquito breeding sites in Northwest Nigeria. International Journal of Mosquito Research, 2022; 9(1):132-138.
- Ebhodaghe FI, Sanchez-Vargas I, Isaac C, Adebayo SA, Ajayi AA, Oke SI, et al. Sibling species of the major malaria vector Anopheles gambiae display divergent preferences for aquatic breeding sites in southern Nigeria. Malar J. 2024;23(1):60.
- 26. Sylla M, Ndiaye M, Ndiaye P. Breeding sites of Anopheles gambiae in a rural area of Senegal. Journal of Insect Science, 2022;22(2), 147-155.
- Msugupakulya BJ, Urio NH, Jumanne M, Herren J, Agumba S, Otieno S et al. Changes in contributions of different Anopheles vector species to malaria transmission in east and southern Africa from 2000 to 2022. Parasites Vectors. 2023;16:408.
- Aschale Y, Getachew A, Yewhalaw D, De Cristofaro A, Sciarretta A, Atenafu G. Systematic review of sporozoite infection rate of Anopheles mosquitoes in Ethiopia, 2001-2021. Parasit Vectors. 2023 ;16(1):437.
- 29. Gueye FD, Dia F, Ndiaye A, Diallo AD, Gueye MV, Diop N, et al. Contribution of cytogenetic and molecular biology in disorders of sex development diagnosis: About 55 cases. Int J Genet Mol Biol. 2023;15(1):1-12.
- 30. Adeogun A, Babalola AS, Okoko OO, Fawole AO, Adeoye OM, Olayemi IK, et al. Spatial distribution and ecological niche modeling of geographical spread of Anopheles gambiae complex in Nigeria using real time data. Sci Rep. 2023;13:13679.
- 31. Hadebe MT, Malgwi SA, Okpeku M. Revolutionizing malaria vector control: The importance of accurate species identification through enhanced molecular capacity. Microorganisms. 2024;12(1):82.
- 32. Haq IU, Mehmood Z, Khan GA, Kainat B, Ahmed B, Shah J, Sami A, Nazar MS, Xu J, Xiang, H. Modeling the

effect of climatic conditions and topography on malaria incidence using Poisson regression: A retrospective study in Bannu, Khyber Pakhtunkhwa, Pakistan. Frontiers in Microbiology. 2024;14.

- 33. Pourtois JD, Tallam K, Jones I, Hyde E, Chamberlin AJ, Evans MV, et al. Climatic, land-use and socio-economic factors can predict malaria dynamics at fine spatial scales relevant to local health actors: Evidence from rural Madagascar. PLOS Glob Public Health. 2023; 223(2): e0001607
- Ryan SJ, Lippi CA, Zermoglio F. Shifting transmission risk for malaria in Africa with climate change: A framework for planning and intervention. Malar J. 2020;19:170.
- 35. Okorie PO, Okafor IJ, Ajayi OO. Feeding and resting behaviors of Anopheles arabiensis in Nigeria. Journal of Vector Ecology. 2022; 47(1), 42-49